ELECTROCHEMISTRY DIAGNOSTICS OF BASELINE AND NEW MATERIALS

Robert Kostecki and Tom Richardson

Principal Investigators

presented by

Frank McLarnon and Robert Kostecki

Lawrence Berkeley National Laboratory Berkeley, California 94720

May 9, 2011

Project ID # ES033

This presentation does not contain any proprietary, confidential, or otherwise restricted information

OVERVIEW

Timeline

- LBNL carried out diagnostics in the ATD Program since its 1999 inception
- ABRT Program began October 2008
- LBNL role expanded beyond diagnostics in FY 2009: Chen & Richardson (overcharge protection), Battaglia (testing BATT materials), and Kostecki/Richardson (materials)

Budget

- FY 2010 diagnostics/materials funding \$600K
- FY 2011 diagnostics/materials funding \$600K

Barriers Addressed

- High-energy batteries poor calendar/cycle lifetimes
- Irreversible capacity losses during formatting and cycling

Partners

- ANL, BNL, INL, and SNL
- Dan Abraham is the ABRT Program diagnostic lead
- Venkat Srinivasan (LBNL) is the LBNL electrochemistry program lead

OBJECTIVES

Task 1.1

- Enable increased cell specific energy by addressing the impact of high potentials on carbons in the cathode
 - Identify physico-chemical changes of carbon additives when subjected to high potentials, and suggest approaches to improved carbon stability
 - Investigate surface treatment regimens to reduce side reactions

Task 2.4

- Determine the key factors that contribute to the degradation mechanism in the PHEV test cells and individual cell components
- Characterize SEI formation on model electrode surfaces to improve understanding of key interfacial phenomena in PHEV cells

MILESTONES

Task 1.1

- Report progress on reduction of contact resistance growth in high-voltage cathodes
- Attend review meetings and present diagnostic results obtained in collaboration with ABRT Program participants

Task 2.4

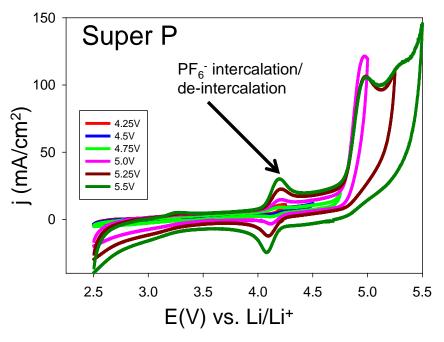
 Attend review meetings and present diagnostic results obtained in collaboration with ABRT Program participants

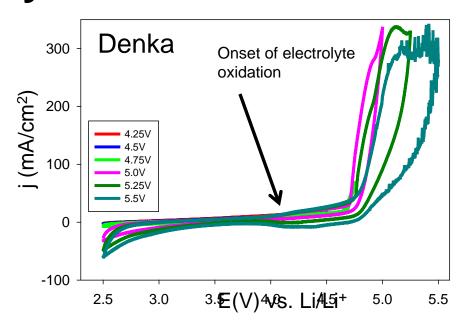
BARRIERS ADDRESSED

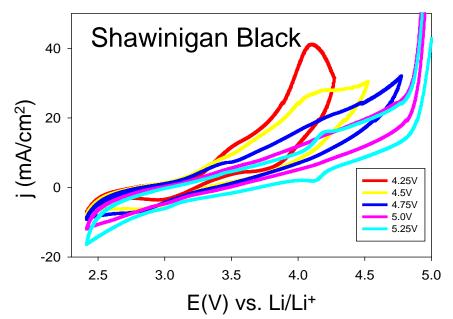
- HEV and PHEV battery durability and safety, as well as the need for efficient cell-formation processes, are the major barriers addressed by LBNL diagnostic work
- The primary LBNL role in the ABRT Program is to carry out specific diagnostic evaluations to determine the changes in cell components that accompany Li-ion cell power fade, capacity fade, and/or failure
- LBNL also seeks to identify electrode and electrolyte processes that are significantly influenced by various cell-formation protocols

PARTNER INTERACTIONS

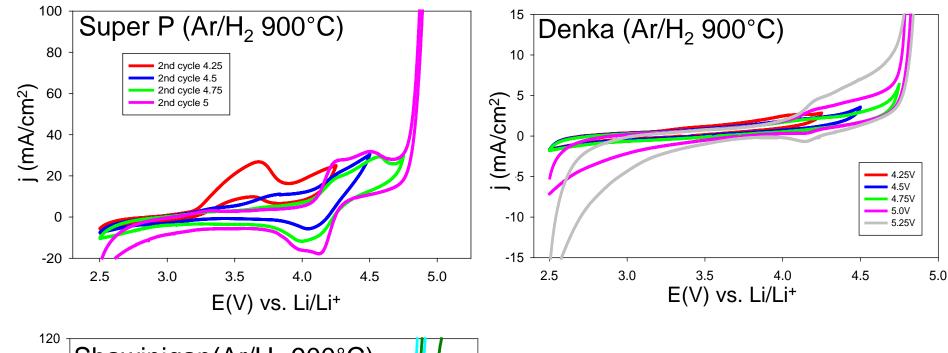
- ANL provides tested cells for characterization at LBNL
- ANL and BNL provide detailed structural, chemical, electrochemical, and thermal-stability information for cell materials
- All participating laboratories periodically share results and plans

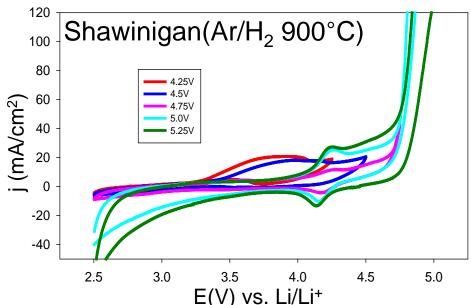

APPROACH


- Strategies to minimize irreversible capacity losses
 - Determine the mechanisms for carbon damage and migration at high potentials
 - Investigate mitigating treatments, additives, and procedures
- Diagnostic evaluation of ABRT Program lithium-ion cell chemistries
 - ➤ Carry out post-test diagnostic evaluation of components from ABRT test cells and model cells (no test cells have been sent to LBNL in FY11)

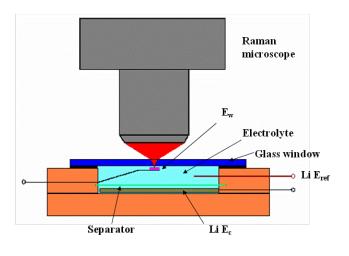

TECHNICAL ACCOMPLISHMENTS

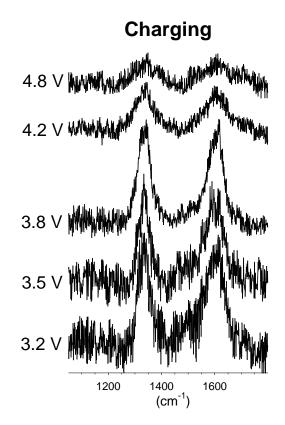
- Completed electrochemical characterization study of common carbon black additives at anodic potentials
- Determined interfacial instability of carbon black in composite highvoltage cathodes
- Elucidated the mechanism of carbon black structural degradation
- Identified an approach to carbon black additive stabilization

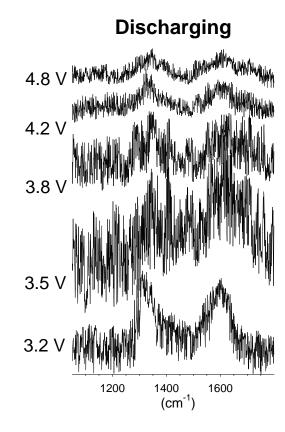

- Three types of carbon black were tested:
 - 1. Shawinigan Black: produced by continuous thermal decomposition of acetylene (surface area 75-80 m²/g)
 - 2. Denka: produced by continuous thermal decomposition of acetylene (surface area 65-68 m²/g)
 - 3. Super P: produced by partial oxidation of petrochemical precursors (surface area 62 m²/g)
- Electrode composition: 90% carbon, 10% PVdF, Al current collector
- Prior to electrochemical testing the electrodes were processed at either 120°C under vacuum for >12 hours or 900°C under a flow of Ar/H₂ for >12 hours
- Carbon black electrodes were tested in three-electrode cells with Li-metal reference and counter electrodes; 1.2 M LiPF₆ EC/EMC (3:7)



- PF₆ intercalation at ~4.1 V vs. Li/Li⁺ leads to degradation of sp²-carbons
 Seel et al. J. Electrochem. Soc. 147, 892 (2000)
- Electrolyte oxidation on carbon black additives limits the use of high-voltage cathode materials

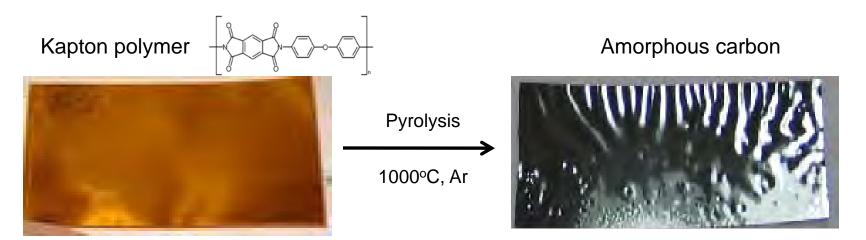


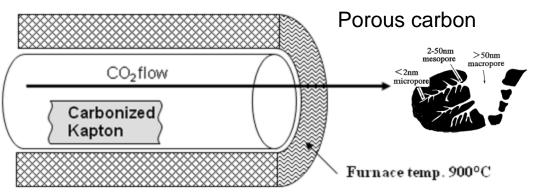

- Heat treatment at 900°C under Ar/H₂ reduced oxygenated surface groups at the carbon surface
- Peaks related to PF₆⁻ intercalation and electrolyte oxidation are still observed


PF₆-Intercalation into Graphitic Carbons

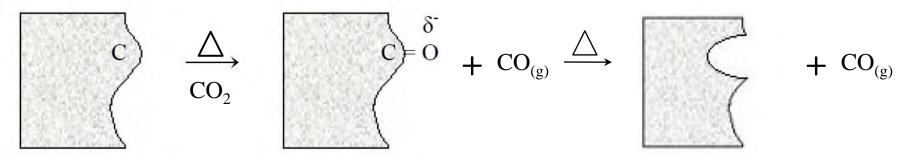
In situ Raman Microscopy of Carbon Black Electrodes

In situ MicroRaman Experimental Setup

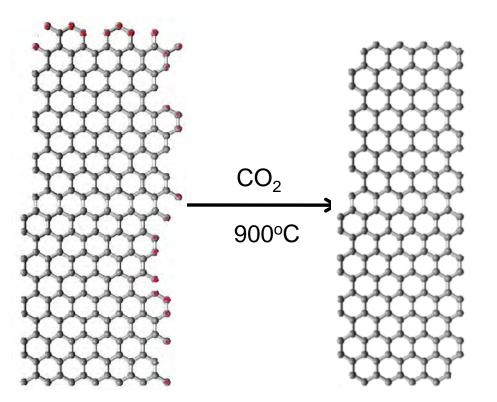



- Intensity of carbon D and G bands decreases at U>3.8 V
- The carbon black spectrum can be partially restored at U<3.5 V

- 1. Synthesize carbon black under controlled conditions
 - Pyrolysis of a Kapton polymer layer at 1000°C to form a binder-free thin-film carbon black electrode
 - Test electrochemical properties of the electrode at high potentials in 1.2 M LiPF₆ EC/EMC (3:7)
- 2. Develop a surface treatment method to reduce the surface electrocatalytic activity of the carbon black material
- 3. Determine the origin of carbon instability toward lithium battery electrolytes at high potentials

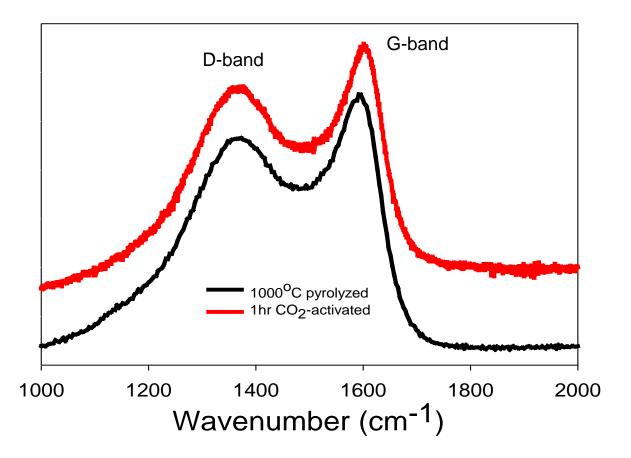

The resulting material is a conductive sp²-carbon material, >100 S/cm Pollak *et al.* J. Phys. Chem. B. **110**, 7443 (2006)

Activation

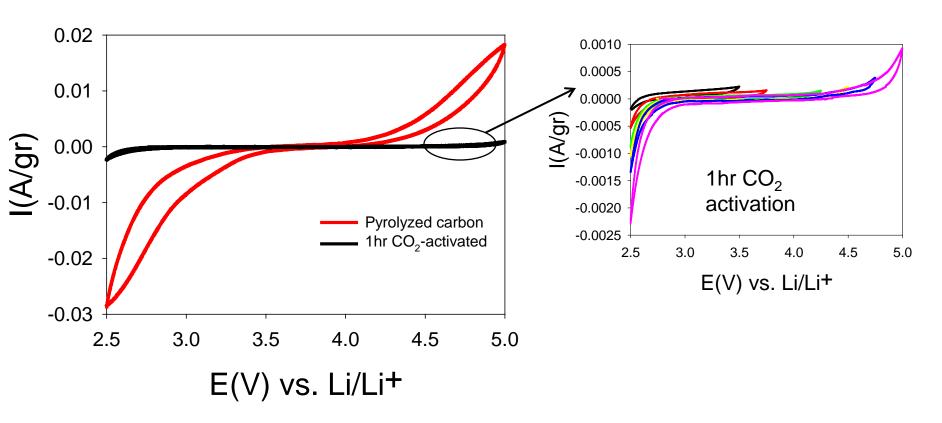


- At elevated temperatures CO₂ acts as a mild oxidizer
- The carbon surface is oxidized and pores are formed
- The conductivity of the porous carbon is ~50 S/cm

Formation of Porous Morphology



Surface Structure Modification


- Electronic states of graphite ribbons depend on the edge shapes
- CO₂ and carbon synproportionation reaction tends to remove carbon edge atoms with high electronic density
- Electronic states of edge carbon atoms determine electrocatalytic activity of carbon vs. organic electrolytes

Raman Structural Analysis

- A blue shift of the Raman G band of the activated carbon sample is observed
- Contributions from the D'-band at 1610 cm⁻¹ may indicate formation of smaller graphene domains upon CO₂-activation

The Effect of Surface Treatment of Carbon Black Additives

- BET surface area of the CO₂-activated carbon (535 m²/g) is two orders of magnitude higher than the pyrolyzed carbon.
- Note the low oxidation current of the 1hr activated carbon
- The relatively low graphitization level of this carbon inhibits PF₆⁻ intercalation Isono et al., Carbon, **42**, 1799 (2004)

Electrochemical Activity of Carbon Additives The Effect of Surface Treatment of Carbon Black Additives

- Low-temperature (1000°C) carbonization produces amorphous carbon which does not allow PF₆⁻ intercalation
- The CO₂ activation process inhibits electrolyte oxidation at the carbon surface by several possible mechanisms:
 - Formation of oxygen surface groups (carbonyl, carboxyl, hydroxyl, etc.), which prevent electrolyte oxidation
 - Formation of a highly developed porous structure with a low concentration of high-electronic-density carbon edge atoms

PLANNED FUTURE WORK

Continue studies of degradation modes of high-voltage cathodes

- Continue search for remedies that decrease irreversible capacity losses and improve coulombic efficiency during cycling
 - Reduce the irreversible charge required to form surface layers
 - ✓ Investigate pretreatment regimens to reduce side reactions

Diagnostics of ABRT Program cell components

- Carry out post-test characterization of components from ABRT cells
 - ✓ Examine electrode composition, structure, and surface films
 - ✓ Understand factors that can enhance the stability of SEI layers
- ➤ Establish and investigate degradation mechanisms of PHEV cells
- Compare degradation mechanisms in ATD vs. ABRT cells

SUMMARY

Supporting research for improved lithium-ion batteries:

- ➤ Electrolyte oxidation and PF₆- intercalation in standard carbon black additives prevents the implementation of high-voltage cathodes
 - ✓ Pyrolysis of organic precursors at relatively low temperatures (1000°C) leads to the formation of amorphous carbon, which does not allow PF₆- intercalation
 - √ CO₂-activation at elevated temperatures (900°C) leads to more than two orders of magnitude higher carbon surface area
 - √ High-surface-area carbon electrode shows increased stability toward electrolyte oxidation

Approach:

- Advanced synthetic and characterization techniques to determine factors that affect the interfacial stability of carbon additives
- Development of new surface-processing methods to increase interfacial electrode stability

Accomplishments:

Identified a candidate processing technique to produce carbon additives for highvoltage cathodes

• Plans:

Continue studies of ABRT cell components and electrode/electrolyte interface stabilization in collaboration with ABRT Program partners